

Welcome to triarray’s documentation!

triarray is a Python package for working with symmetric matrices in non-
redundant format. This format stores only the elements in the upper or lower
triangle, thus halving memory requirements.

When storing symmetric matrices in standard array format about half of the
elements are redundant, meaning you are using twice as much memory or disk space
as you need to. This is especially common in scientific applications when
working with large distance or similarity matrices.

Space can be saved by storing only the lower or upper triangle of the array, but
standard operations like getting an element by row and column become awkward.
triarray provides tools for working with data in this format.

triarray uses Numba [http://numba.pydata.org/] ‘s just-in-time compilation to
generate high-performance C code that works with any data type and is easily
extendable (including within a Jupyter notebook).

Example

The scipy.spatial.distance.pdist() [https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist] function calculates pairwise distances
between all rows of a matrix and returns only the upper triangle of the full
distance matrix:

import numpy as np
from scipy.spatial.distance import pdist

vectors = np.random.rand(1000, 10)

dists = pdist(vectors) # Shape is (499500,) instead of (1000, 1000)

The TriMatrix class wraps a 1D Numpy array storing the condensed data
and exposes an interface that lets you treat it as if it was still in matrix
format:

from triarray import TriMatrix

matrix = TriMatrix(dists, upper=True, diag_val=0)

matrix.size # Number of rows/columns in matrix
>>> 1000

matrix[0, 1] # Distance between 0th and 1st vector
>>> 1.1610289956390953

matrix[0, 0] # Diagonals are zero
>>> 0.0

matrix[0] # 0th row of matrix
>>> array([0. , 1.161029 , 1.03467554, 1.32559121, 1.26185034,
 ...

It even supports Numpy’s
advanced indexing [https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing]
with integer arrays of arbitrary shape:

rows, cols = np.ix_([0, 1, 2], [3, 4, 5])
rows, cols
>>> (array([[0],
 [1],
 [3]]), array([[4, 5, 6]]))

matrix[rows, cols]
>>> array([[1.26185034, 1.08800206, 1.30490993],
 [0.99262394, 1.33044029, 1.20373382],
 [1.42524039, 1.36195143, 1.70404005]])

Documentation contents

	Basic Usage

API

	Python API
	Indexing

	Array conversion

	I/O

	Matrix interface

	Numba API
	TODO

Indices and tables

	Index

	Search Page

Basic Usage

TODO

Python API

Indexing

Tools for converting between 2D indices of full matrices and 1D indices of
condensed arrays.

Array conversion

Convert full 2D matrices to and from condensed triangular format.

I/O

Read and write full matrices to and from disk in condensed format.

Matrix interface

Numba API

Use these functions if you wish to extend triarray using Numba.

This package makes heavy use of Numba [http://numba.pydata.org/] to compile
Python functions into high-performance C code. Many of these compiled functions
are hidden behind Python functions to expose a more friendly API, but I chose
Numba over Cython for this purpose in part because it is much easier to extend
existing code (especially in the Jupyter Notebook).

If you plan on using this package in your own Numba code it will greatly
improve performance to use the Numba compiled functions directly.

TODO

Fill this out…

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to triarray’s documentation!

 		
 Basic Usage

 		
 TODO

 		
 Python API

 		
 Indexing

 		
 Array conversion

 		
 I/O

 		
 Matrix interface

 		
 Numba API

 		
 TODO

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

